

Manual de prácticas del laboratorio de Topografía II

Código:	MADO-51
Versión:	01
Página	16/22
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018

Facultad de Ingeniería Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

Práctica 4

Configuración por puntos notables del terreno

Manual de prácticas del laboratorio de Topografía II

Código:	MADO-51
Versión:	01
Página	17/22
Sección ISO	8.3
Fecha de	19 de enero de 2018
emisión	

Facultad de Ingeniería Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

1. Seguridad en la ejecución

	Peligro o fuente de energía	Riesgo asociado
1	Manipulación de instrumentos.	Daños internos y externos al equipo manipulado.
2	Terreno accidentado.	Lesiones principalmente en piernas y brazos.
3	Falta de vigilancia a los instrumentos.	Robo o extravío de los instrumentos.

2. Objetivos de aprendizaje

- **I. Objetivos generales:** El alumno aplicará métodos para la determinación de alturas respecto a un plano horizontal de comparación, para realizar la configuración de una fracción de terreno y para calcular y trazar curvas horizontales y verticales.
- **II. Objetivos específicos:** El alumno aplicará métodos para la configuración de terrenos y generará su representación gráfica mediante curvas de nivel.

3. Introducción

La configuración del terreno son todas las formas o elementos físicos y reconocibles de la superficie terrestre que tienen una forma característica y están producidos por causas naturales; incluye formas principales como llanuras, mesetas y montañas y formas menores como colinas, valles, gradientes, esker y dunas. En su conjunto, las configuraciones del terreno conforman la configuración de la superficie de la Tierra.

Para obtener la configuración de un terreno, se requiere conocer la posición (en planta y elevación), de "algunos" puntos del terreno, "convenientemente" distribuidos.

La cantidad y distribución de puntos necesarios para obtener una buena configuración de un terreno, depende de los siguientes factores: Finalidad del trabajo, precisión requerida, tipo de relieve, forma y tamaño del terreno, instrumentos disponibles.

Manual de prácticas del laboratorio de Topografía II

Código:	MADO-51
Versión:	01
Página	18/22
Sección ISO	8.3
Fecha de	19 de enero de 2018
emisión	

Facultad de Ingeniería

Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

4. Material y Equipo

- Nivel fijo
- Estadales
- Estación total
- Prismas
- Computadora
- Software de dibujo por computadora.

5. Desarrollo

I. Actividad 1

- Para obtener una configuración se requiere de una nube de puntos con datos de coordenadas X, Y y una elevación. En esta ocasión de aplicará el método de secciones transversales visto en prácticas anteriores.
- Para la obtención de datos de puntos notables en el terreno existen diversas metodologías y equipo que se pueden utilizar, el más común actualmente es mediante el levantamiento con estación total.
- Recuerde que para emplear la estación total deberá contar con puntos de control. Una vez orientado su instrumento proceda a recolectar las coordenadas X, Y, Z de los puntos de interés para configurar planialtimétricamente su terreno.
- Una vez recabada la información necesaria descargue en gabinete los datos de la estación hacia la computadora atendiendo las instrucciones de su profesor.
- Calcule y trace las curvas de nivel.
- Ya que existe diversidad de software especializado que incluyen rutinas para el trazo de curvas de nivel mediante una nube de puntos y secciones transversales siga las indicaciones de su profesor.

6. Bibliografía

- ALCÁNTARA GARCÍA, Dante Alfredo. Topografía. 1a. edición. México. Patria 2009
- HIGASHIDA MIYABARA, Sabro Topografía general. 1a. edición México SabroHigashida Miyabara,1971
- ❖ JACK MC CORMAC. Topografía. 2a. edición. México. Limusa, 2004.
- RUSSEL, Brinker, WOLF, Paul. Topografíamoderna. TODOS. 11a.edición. New York. Alfa Omega, 2010
- SCHIMIDT, Milton, RAYNER, William. Fundamentos de topografía. 2a. edición. México Continental, 1983
- TORRES ÁLVARO, Villate B. Eduardo. Topografía. 1a. edición. Cali Norma, 1983